

PHYTOCHEMISTRY

Phytochemistry 63 (2003) 953-957

www.elsevier.com/locate/phytochem

Diterpene esters of aristolochic acids from Aristolochia pubescens

Isabele R. Nascimento, Lucia M.X. Lopes*

Instituto de Química, Universidade Estadual Paulista-Unesp, CP 355. 14801-970, Araraquara, SP, Brazil

Received 11 February 2003; received in revised form 7 April 2003

Abstract

From the acetone and ethanol extracts of the tubercula of *Aristolochia pubescens*, two diterpene esters of aristolochic acids were isolated, together with 23 known compounds. The structures of the compounds were determined on the basis of spectroscopic analysis. © 2003 Elsevier Ltd. All rights reserved.

Keywords: Aristolochia pubescens; Aristolochiaceae; Diterpene esters; Aristolochic esters; Aristolochic acids; Kaurane diterpenes; Lignans

1. Introduction

The interest in phytochemical studies of the Aristolochiaceae family is due to the widespread use of its species in traditional medicine and homeopathy (Lopes et al., 2001). As part of an ongoing study of the chemical constituents of Aristolochia pubescens (Aristolochiaceae) (Nascimento and Lopes, 1999, 2000), the isolation and structural elucidation of 25 compounds from the tubercula of this species are reported. Three of these compounds (1-3) present an unusual carbon skeleton in which an aristolochic acid derivative is bound to a kaurane diterpene, and two of them are new: 16αhydroxy-ent-17-kauranyl aristolochate I (aristoloin I, 1) and 16α-hydroxy-ent-17-kauranyl aristolochate II (aristoloin II, 2). The structures of the new compounds were determined on the basis of spectroscopic methods, mainly using ¹H and ¹³C NMR spectroscopy. The known compounds (3–25) were identified by comparing their physical and spectroscopic data with those of authentic samples and/or data reported in the literature. The known compounds 16α,17-ent-kauranediol (15) and (-)-cubebin (18) were also isolated from the stems and the roots of this species (Nascimento and Lopes, 1999, 2000), whereas (-)-isocorydine (13) and (-)-dihydrocubebin (17) were isolated for the first time from the Aristolochiaceae. The ¹³C NMR spectroscope data of aristolochic acid VIIa (5), four sodium aristolochates

2. Results and discussion

Compounds 1–25 were isolated from the acetone and ethanol extracts of the tubercula by chromatography column, followed by preparative TLC, HPLC, and/or recrystallization. The known compounds were identified

E-mail address: lopesxl@iq.unesp.br (L.M.X. Lopes).

^{(6–9),} and two N-β-glucoside aristolactams (11 and 12) are described for the first time in this work.

^{*} Corresponding author. Tel.: +55-16-201-6663; fax: +55-16-222-7932

as aristolin (3) (Wu et al., 2002), aristolochic acid I (4), aristolochic acid VIIa (5), sodium aristolochate I (6) (Leu et al., 1998a), sodium aristolochate II (7), sodium aristolochate IIIa (8), sodium aristolochate IVa (9) (Chiang et al., 1998), aristolactam I N-β-glucoside (10) (Achari et al., 1984), aristolactam Ia N-β-glucoside (11) (Leu et al., 1998b), aristolactam IIIa N-β-glucoside (12) (Achari et al., 1981), (–)-isocorydine (13) (Guinaudeau et al., 1975), trans-N-feruloyltyramine (14) (Navickiene and Lopes, 2001), 16α,17-ent-kauranediol (15), ent-kaur-15en-17-ol (16) (Lopes et al., 1990), (-)-dihydrocubebin (17) (Anjaneyulu et al., 1981), (-)-cubebin (18), (-)-hinokinin (19) (Navickiene and Lopes, 2001), kusunokinin (20), bursehernin (21) (Lopes et al., 1983), trans-methyl p-coumarate (22), and cis-methyl p-coumarate (23) (Chiang et al., 1998). In addition, all antoin (24) and glucose (25) were identified by comparison of their physical and spectroscopic data with those of authentic samples.

From gCOSY, gHMQC, and gHMBC experiments, it was possible to assign more feasible δ values for carbons and hydrogens, including C-1', C-7', and C-14', than those previously described in the literature (Kitajima et al., 1982) for 15. These assignments were based mainly on the correlation between C-1' (δ 40.3) and H₃-20' (δ 0.95) and between C-16' (δ 81.9) and H-14' (δ 1.90) observed by gHMBC experiments. The ¹H and ¹³C NMR, gCOSY, gHMQC, and gHMBC data obtained for compounds 1–3 were very similar to those observed for aristolochic acids I (4) or II (26) and 16 α ,17-ent-kauranediol (15) (Tables 1 and 2).

The ESI-MS of alkaloid 1 displayed a quasi-molecular ion $[M + H]^+$ at m/z 630, which was consistent with the molecular formula C₃₇H₄₃NO₈. The ¹H NMR spectrum of 1 showed signals for five aromatic hydrogens at δ 8.86 (s), 8.72 (d, J = 7.5 Hz), 7.75 (s), 7.74 (dd, J = 7.5 and 8.0 Hz), and 7.13 (d, J = 8.0 Hz) similar to aristolochic acid I (4) (Table 1). It also showed signals for aliphatic hydrogens comparable to those observed for 16α,17-entkauranediol (15) (Kitajima et al., 1982), including three methyl groups at δ 1.04 (s), 0.87 (s), and 0.82 (s). However, it was observed that the carbinolic hydrogens (H₂-17') absorbed at higher frequency ($\Delta \delta = +0.74$ and +0.85) than in 15. The ¹³C NMR spectrum of 1 showed 14 carbons for the phenanthrene moiety and 20 carbons for the diterpene moiety (Table 2). The gHMBC spectrum showed correlations of a carbonyl carbon at δ 167.2 (C-11) with H-2 (δ 7.75) and H₂-17' (δ 4.50 and 4.54) establishing that the two moieties were joined by an ester, which was confirmed by an absorption band at 1710 cm⁻¹ in the IR spectrum. The gHMBC spectrum also allowed unambiguous establishment of the chemical shifts for C-1', C-7', and C-14'. The effects of the esterification observed on C-17' ($\Delta \delta = +3.2$) and C-16' $(\Delta \delta = -1.8)$ were analogous to those reported for 16α,17-ent-kauranediol acetyl derivatives (Elliger et al., 1992; Fatope et al., 1996), which corroborated the proposed structure. Compound 1 exhibited optical rotation. Although aristolochic acid I also shows optical activity ($[\alpha]_D^{25} + 12.5^\circ$; MeOH; c. 0.4), it is suggested that 1 belongs to the *ent*-kaurane series due to its negative specific rotation ($[\alpha]_D^{25} = -42.1^\circ$), which is characteristic of the *ent* series (Velandia et al., 1998), and since to date, only *ent*-kauranes were isolated from *A. pubescens* and the Aristolochiaceae (Lopes et al., 2001). Thus, 1 was characterized as 16α -hydroxy-*ent*-17-kauranyl aristolochate I (named aristoloin I).

The UV, ESI-MS, IR, ¹H and ¹³C NMR, gHMQC and gHMBC data obtained for compound **2** (Tables 1 and 2) showed that this compound differed from **1** only by the absence of a methoxyl substituent at C-8. This difference was supported by a $[M+H]^+$ at m/z 600, the number and multiplicities of the hydrogens in the C-ring as evidenced by the ¹H and ¹³C NMR spectra data, as well as by the gHMBC and gHMQC data. The NMR spectra data for the aromatic hydrogens and carbons of **2** were comparable with those of aristolochic acid II (**26**). Compound **2** exhibited a specific rotation $[[\alpha]_D^{25} = -53.4^\circ)$ comparable to that for **1**. Therefore, compound **2** was characterized as 16α -hydroxy-ent-17-kauranyl aristolochate II (named aristoloin II).

A detailed analysis of the spectroscopic data obtained for compound 3 indicated that it is an isomer of 1, and that the aristolochic and kaurane moieties were linked through C-11 \rightarrow O \rightarrow C-16′, mainly due to the chemical shifts of C-17′ (δ 63.7) and H₂-17′ (δ 4.42, d, d = 13.5 Hz and 4.08, d, d = 13.5 Hz). In addition, the d HMBC spectrum of 3 did not show a correlation between C-11 and H₂-17′. Thus, compound 3 was identified as aristolin, recently isolated from d Aristolochia elegans (Wu et al., 2002).

3. Experimental

3.1. General experimental procedures

The NMR spectra were measured on a Varian spectrometer (11.7 T) at 500 MHz (¹H) and 126 MHz (¹³C), using the solvents as an internal standard. The mass spectra were obtained on a Fisons Platform II by flow injection into the electrospray source (ESI–MS). The IR spectra were obtained on a Nicolet-730 FT-IR spectrometer using KBr discs. UV absorption were measured in a Hewlett Packard 8452A diode array spectrophotometer. Optical rotations were measured on a Polamat A Carl Zeiss Jena. HPLC analyses were carried out using a Shimadzu liquid chromatograph 10 Avp equipped with a UV-vis detector. The employed column was RP 18 (Shimadzu, 250×20 mm) and the chromatograms were acquired at 254 nm.

3.2. Plant material

The plant was collected in Ituiutaba, MG, Brazil, and identified as A. pubescens Will. ex Duch. by Dr. Con-

Table 1 ¹H NMR spectral data for compounds 1, 2, 4, and 26 (500 MHz, δ)^{a,b}

Н	1 (CDCl ₃)	2 (CDCl ₃)	4 (CDCl ₃)	26 ^c (DMSO- <i>d</i> ₆) 7.80 <i>s</i>		
2	7.75 s	7.76 s	7.80 s			
5	8.72 <i>d</i> (7.5)	9.17 d (8.0)	8.66 d (8.5)	9.07 d (8.0)		
6	7.74 dd (7.5, 8.0)	7.83 t (8.0)	7.68 t (8.5)	7.90 t (8.0)		
7	7.13 d (8.0)	7.74 t (8.0)	7.07 d (8.5)	7.81 t (8.0)		
8		8.01 <i>d</i> (7.5)		8.25 d (8.0)		
9	8.86 s	8.36 s	8.81 s	8.57 s		
1'	0.76 dt (3.0, 13.0), 1.80 br d (13.0)	0.76 m, 1.80 m				
2'	1.42 <i>m</i>	1.40 m				
3′	1.15 dt (4.0, 13.5), 1.64 m	1.15 m, 1.64 m				
5'	$0.80 \ m$	$0.80 \ m$				
6'	1.56 m	1.56 m				
7′	1.40 m, 1.52 m	1.38 m				
9′	1.06 br d (7.5)	1.07 d (7.4)				
11'	1.62 m	1.62 m				
12'	1.62 m	1.62 m				
13'	2.12 br s	2.13 <i>br s</i>				
14'	1.66 m, 1.98 d (11.5)	1.66 m, 1.99 br d (11.7)				
15'	1.54 br d (14.5), 1.72 dd (1.8, 14.5)	1.54 m, 1.72 m				
17'	4.50 d (11.5), 4.54 d (11.5)	4.51 <i>d</i> (11.5), 4.54 <i>d</i> (11.5)				
18'	0.87 s	0.87 s				
19'	$0.82 \ s$	$0.82 \ s$				
20'	1.04 s	1.04 s				
OCH ₂ O	6.39 s	6.42 s	6.34 s	6.49 s		
OCH ₃	4.08 s		4.01 s			

^a The chemical shifts of the respective hydrogens between δ 1.68 and 0.80 were taken from gHMQC data and the multiplicities were not resolved.

dorcet Aranha (Secretaria do Meio Ambiente da Prefeitura de Joinville, Joinville, SC, Brazil). A voucher specimen was deposited at the herbarium of the Instituto Agronômico de Campinas, Campinas, SP, Brazil. The fresh tubercula (782.1 g) of *A. pubescens* were dried, ground and extracted exhaustively at room temp. with hexane, Me₂CO, and EtOH successively, and the extracts individually concentrated.

3.3. Isolation

The crude acetone extract (6.5 g) was washed with CHCl₃, MeOH, and Et₂O successively, and the extracts individually concentrated. The residue yielded allantoin (24, 220 mg). The CHCl₃ fraction (2.72 g) was fractionated by CC (silica gel, 50 g, hexane-EtOAc gradient) and yielded 19 fractions. Fractions 6, 9, and 13 gave 16 (118 mg), **19** (68 mg), and **18** (881 mg), respectively. Fraction 15 (260 mg) by CC (silica gel, 8 g, CH₂Cl₂-MeOH gradient) gave 17 (10 mg) and 18 (32 mg). Onethird of the MeOH fraction (871 mg) was fractionated by CC (Lobar C-8 Merck, 240×10 mm, MeOH-H₂O gradient) and yielded 13 fractions. Fraction 3 after prep. TLC (CHCl₃-MeOH-H₂O 14:6:1) gave **22** (3 mg), **23** (2 mg), and 25 (4 mg). Fraction 6 was subjected to HPLC [MeOH-H₂O (HOAc 1%) 3:2] to give 11 (2 mg). Fraction 7 was subjected to HPLC [MeOH-H₂O (HOAc 1%) 1:1] to give **8** (1 mg) and **12** (3 mg). Fraction 10

gave 10 (37 mg). Fractions 11, 12, and 13 were subjected to HPLC [MeOH-H₂O (HOAc 1%) 3:2] to give 9 (2 mg), 7 (5 mg), 6 (4 mg), and 4 (3 mg). The Et₂O fraction (125 mg) was subjected to HPLC [MeOH-H₂O (HOAc 1%) 13:7] to give 4 (13 mg), 7 (4 mg), and 9 (2 mg). The crude ethanol extract (13.4 g) was washed with hot ethanol. After freezing, a precipitate was separated and yielded allantoin (11, 4.60 g). The ethanol solution was concentrated (7.70 g), dissolved in MeOH–H₂O 1:1 (400 ml), and extracted with CHCl₃ (3×100 ml). The organic phase was concentrated (2.0 g), fractionated by CC (silica gel, 40 g, CHCl₃–MeOH gradient), and yielded 33 fractions. After prep. TLC (hexane–EtOAc 7:3), fraction 3 (243 mg) gave 16 (80 mg) and 19 (21 mg). Fraction 4 after prep. TLC (CHCl₃-EtOAc 9:1) gave **20** + **21** (12 mg) and two sub-fractions that were also subjected to prep. TLC (hexane–EtOAc 7:3) to give 1 (4 mg), 2 (2 mg), and 3 (2 mg). Fractions 5, 13, and 20 gave 18 (258 mg), 15 (66 mg), and 14 (4 mg), respectively. Fraction 24 after prep. TLC [CHCl₃-MeOH-NH₄OH (19:1:0.1)] gave **13** (6 mg). Fractions 26 and 28 were subjected to prep. TLC [CHCl₃-MeOH-NH₄OH (3:2:0.25)] and [CHCl₃-MeOH-NH₄OH (7:3:0.5)] to give **6** (4 mg) and **5** (5 mg), respectively.

3.3.1. 16α-Hydroxy-ent-17-kauranyl aristolochate I (aristoloin I, 1)

Amorphous yellow solid. $[\alpha]_D^{25}$ -42.1° (CHCl₃; c. 0.20). (Found: C, 70.4; H, 7.0. C₃₇H₄₃O₈N requires: C,

^b Multiplicity (*J* in Hz).

^c Data obtained from the literature (Chiang et al., 1998).

Table 2 13 C NMR spectral data for compounds 1–4, 15 (126 MHz, δ) and 26 (20 MHz, δ)

C	1 (CDCl ₃) ¹³ C (δ)	gHMBC	2 ^a (CDCl ₃) ¹³ C (δ)	gHMBC	3 ^a (CDCl ₃) ¹³ C (δ)	gHMBC	4 (DMSO- d_6) 13 C (δ)	26 ^c (DMSO- <i>d</i> ₆) ¹³ C (δ)	С	15 (CDCl ₃) ¹³ C (δ)
1	b		b		b		124.5	124.6		
2	112.7		112.8		112.5		112.2	112.0		
3	143.1		b		b		146.0	146.1		
4	147.5	H-2	146.8	H-2, OC <u>H</u> 2O	146.2	H-2, OC <u>H</u> 2O	146.2	146.3		
4a	b		b		b		116.9	116.8		
4b	131.0	H-6, H-9	b		131.0	H-6, H-9	129.8	b		
5	119.2		127.4		119.2		118.4	126.6		
6	131.0		130.5		b		131.5	130.5		
7	108.0	H-5	b		108.0	H-5	108.7	128.8		
8	156.9	H-6, OC <u>H</u> 3	130.2	H-6, H-9	156.9	H-6, OC <u>H</u> 3	156.3	130.5		
8a	120.2	H-5, H-7	128.5	H-7	120.2	H-5, H-7	118.8	128.9		
9	121.2		126.5		121.1		119.5	126.0		
10	145.9	H-9	b		b		145.7	146.0		
10a	b		118.3	H-2, H-9	119.2	H-2	117.3	117.4		
11	167.2	H-2, H-17'	167.5	H-2, H-17'	167.2	H-2	167.9	168.0		
1'	40.3	H-20'	40.4	H-20'	40.4	H-20'			1	40.3
2'	18.6		b		b				2	18.6
3'	41.9	H-18', H-19'	42.0	H-18', H-19'	42.0	H-18', H-19'			3	41.9
4′	33.3		b		b				4	33.2
5'	56.0		56.1		56.2	H-18', H-19', H-20'			5	56.2
6'	20.5		b		20.5				6	20.4
7'	42.1	H-15'	42.0	H-15'	42.0				7	42.0
8'	44.9		b		b				8	44.7
9′	56.7	H-15', H-20'	56.6	H-15', H-20'	56.5	H-15', H-20'			9	56.7
10'	39.4		b		b				10	39.4
11'	18.3		b		b				11	18.3
12'	26.3		27.1		27.4				12	26.3
13'	46.3	H-14', H-17'	46.5	H-14'	43.5				13	45.5
14'	37.2		37.5		38.1				14	37.3
15'	53.3		53.4		51.0				15	53.4
16′	80.1	H-15', H-17'	80.0	H-12'	b				16	81.9
17'	69.6	H-15'	70.2	H-15'	63.7				17	66.4
18'	33.6	H-19'	33.6	H-19'	33.6	H-19'			18	33.5
19'	21.5	H-18'	22.0	H-18'	21.6	H-18'			19	21.5
20'	17.8		18.0		17.8				20	17.8
OCH_2O	102.4		103.0		102.4		103.0	103.2		
OCH_3	56.2				56.2		56.2			

^a The ¹³C NMR data were obtained from gHMQC and gHMBC.

70.6; H, 6.9%). UV $\lambda_{\rm max}^{\rm MeOH}$ nm (log ε): 223 (4.42), 256 (4.24), 289 (4.06), 316 (3.86), 389 (3.68). IR $\nu_{\rm max}^{\rm KBr}$ cm $^{-1}$: 3600, 1710, 1599, 1432, 1352. Positive ESI–MS (probe) 70 eV, m/z (rel. int.): 630 [M+H] $^+$ (100). For 1 H and 13 C NMR, see Tables 1 and 2.

3.3.2. 16α-Hydroxy-ent-17-kauranyl aristolochate II (aristoloin II, 2)

Amorphous yellow solid. [α] $_{25}^{25}$ –53.4° (CHCl₃; c. 0.16). (Found: C, 72.0; H, 6.7. C₃₆H₄₁O₇N requires: C, 72.1; H, 6.9%). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 219 (4.28), 250 (4.19), 314 (3.80), 387 (3.50). Positive ESI-MS (probe) 70 eV, m/z (rel. int.): 600 [M+H] $^{+}$ (100). For 1 H and 13 C NMR, see Tables 1 and 2.

3.3.3. Aristolochic acid VIIa (5)

Amorphous brownish solid. UV, IR, and ¹H NMR data are in agreement with those reported in the literature (Leu et al., 1998a). ¹³C NMR (126 MHz, DMSO- d_6): δ 61.0 (OCH₃-8), 102.7 (OCH₂O), 111.0 (C-2), 115.6 (C-10a), 117.9 (C-4a), 119.2 (C-9), 121.6, 122.9 (C-5, C-6), 122.0 (C-8a), 124.2 (C-1), 131.7 (C-4b), 142.9 (C-10), 145.9, 147.0 (C-3, C-4), 149.0 (C-7), 149.0 (C-8), 168.2 (COOH).

3.3.4. Sodium aristolochate I (6)

Amorphous brownish solid. UV, IR, ¹H NMR data are in agreement with those reported in the literature (Leu et al., 1998a). Positive ESI–MS (probe) 70 eV, *m*/*z*

^b Data not observed.

^c Data obtained from the literature (Priestap, 1989).

(rel. int.): 364 [M+H]^+ (100). ^{13}C NMR (126 MHz, DMSO- d_6): δ 56.1 (OCH₃-8), 101.8 (OCH₂O), 108.1 (C-7), 111.6 (C-2), 116.2 (C-9), 116.4 (C-10a), 116.9 (C-4a), 118.5 (C-5), 119.1 (C-8a), 130.1 (C-4b), 130.3 (C-6), 136.7 (C-1), 142.7 (C-4), 145.7 (C-3), 148.2 (C-10), 156.0 (C-8), 169.1 (COONa).

3.3.5. Sodium aristolochate II (7)

Amorphous brownish solid. UV, IR, and ^{1}H NMR data are in agreement with those reported in the literature (Chiang et al., 1998). Positive ESI–MS (probe) 70 eV, m/z (rel. int.): 334 [M+H]⁺ (100). ^{13}C NMR (126 MHz, DMSO- ^{4}G): δ 101.9 (OCH $_{2}O$), 111.4 (C-2), 116.8 (C-10a), 122.5 (C-9), 126.4 (C-5), 127.8 (C-7), 128.9 (C-4b), 129.0 (C-8a), 129.3 (C-6), 129.8 (C-8), 142.5 (C-4), 145.6 (C-3), 148.6 (C-10).

3.3.6. Sodium aristolochate IIIa (8)

Amorphous brownish solid. UV, IR, and ^{1}H NMR data are in agreement with those reported in the literature (Chiang et al., 1998). Positive ESI–MS (probe) 70 eV, m/z (rel. int.): 350 [M+H]⁺ (100). ^{13}C NMR (126 MHz, DMSO- d_6): δ 101.9 (OCH₂O), 111.1 (C-5), 111.6 (C-2), 118.2 (C-7), 122.6 (C-8a), 131.0 (C-4b), 131.7 (C-8), 145.3 (C-3), 159.2 (C-6).

3.3.7. Sodium aristolochate IVa (9)

Amorphous brownish solid. UV, IR, and ^{1}H NMR data are in agreement with those reported in the literature (Chiang et al., 1998). Negative ESI–MS (probe) 35 eV, m/z (rel. int.): 356 [M-Na]⁻ (100). ^{13}C NMR (126 MHz, DMSO- d_6): δ 56.0 (OCH₃-8), 99.2 (C-7), 101.7 (OCH₂O), 103.6 (C-5), 111.5 (C-2), 112.2 (C-8a), 116.4 (C-4a), 117.4 (C-9), 131.7 (C-4b), 143.9 (C-4), 145.1 (C-10), 145.3 (C-3), 157.6 (C-8), 160.3 (C-6).

3.3.8. Aristolactam Ia N-β-glucoside (11)

Amorphous brownish solid. UV, IR, MS, and 1 H NMR data are in agreement with those reported in the literature (Leu et al., 1998b). 13 C NMR (126 MHz, DMSO- d_6): δ 60.8 (C-6'), 69.5 (C-2'), 70.2 (C-3'), 77.0 (C-4'), 80.0 (C-5'), 81.6 (C-1'), 100.8 (C-9), 103.2 (OCH₂O), 105.6 (C-2), 112.2 (C-7), 117,0 (C-5), 122.6 (C-8a), 124.1 (C-10a), 125.2 (C-4b), 126.1 (C-6), 133.1 (C-10), 148.2 (C-4), 154.2 (C-8).

3.3.9. Aristolactam IIIa N-β-glucoside (12)

Amorphous brownish solid. IR, MS, and ^{1}H NMR data are in agreement with those reported in the literature (Achari et al., 1981). ^{13}C NMR (126 MHz, DMSO- d_6): δ 62.1 (C-6'), 70.8 (C-2'), 70.8 (C-3'), 78.1 (C-4'), 80.7 (C-5'), 82.4 (C-1'), 104.2 (OCH₂O), 106.2 (C-2), 108.2 (C-9), 111.4 (C-4a), 111.8 (C-5), 118.2 (C-7), 125.6 (C-10a), 126.0 (C-4b), 127.0 (C-8a), 131.3 (C-8), 131.8 (C-10), 148.2 (C-4), 149.5 (C-3), 156.2 (C-6), 166.1 (CO).

Acknowledgements

The authors thank the Fundação de Amparo à Pesquisa do Estado de São Paulo for financial support, including the fellowship to I. R. Nascimento.

References

- Achari, B., Chakrabarty, S., Pakrashi, S.C., 1981. An *N*-glycoside and steroids from *Aristolochia indica*. Phytochemistry 20, 1444–1445.
- Achari, B., Bandyopadhyay, S., Chakravarty, A.K., Pakrashi, S.C., 1984. Carbon-13 NMR spectra of some phenanthrene derivatives from *Aristolochia indica* and their analogues. Org. Magn. Res. 22, 741–746
- Anjaneyulu, A.S.R., Ramaiah, P.A., Row, L.R., Venkateswarlu, R., Pelter, A., Ward, R.S., 1981. New lignans from the heartwood of *Cleistanthus collinus*. Tetrahedron 37, 3641–3652.
- Chiang, C.-Y., Leu, Y.-L., Chan, Y.-Y., Wu, T.-S., 1998. Sodium aristolochates from the flowers and fruits of *Aristolochia zollingeri*ana. J. Chin. Chem. Soc. 45, 93–97.
- Elliger, C.A., Wong, R.Y., Benson, M., Gaffield, W., Waiss Jr., A.C., 1992. Diterpenes of *Calibrachoa parviflora*. J. Nat. Prod. 55, 1477–1487
- Fatope, M.O., Audu, O.T., Takeda, Y., Zeng, L., Shi, G., Shimada, H., McLaughlin, J.L., 1996. Bioactive ent-kaurene diterpenoids from Annona senegalensis. J. Nat. Prod. 59, 301–303.
- Guinaudeau, H., Leboeuf, M., Cavé, A., 1975. Aporphine alkaloids. Lloydia 38, 275–338.
- Kitajima, J., Komori, T., Kawasaki, T., 1982. Studies on the constituents of the crude drug "Fritillarie Bulbus". III. On the diterpenoid constituents of fresh bulbs of *Fritillaria thumbergii* Miq. Chem. Pharm. Bull. 30, 3912–3921.
- Leu, Y.-L., Chan, Y.-Y., Wu, T.-S., 1998a. Sodium aristolochate derivatives from leaves of *Aristolochia foveolata*. Phytochemistry 48, 743–745.
- Leu, Y.-L., Chan, Y.-Y., Hsu, M.-Y., Chen, I.-S., Wu, T.-S., 1998b. The constituents of the stem and roots of *Aristolochia foveolata*. J. Chin. Chem. Soc. 45, 539–541.
- Lopes, L.M.X., Yoshida, M., Gottlieb, O.R., 1983. Dibenzylbutyrolactone lignans from *Virola sebifera*. Phytochemistry 22, 1516–1518.
- Lopes, L.M.X., Bolzani, V.DaS., Trevisan, L.M.V., Grigolli, T.M., 1990. Terpenes from *Aristolochia triangularis*. Phytochemistry 29, 660–662
- Lopes, L.M.X., Nascimento, I.R., Silva, T.Da, 2001. Phytochemistry of the Aristolochiaceae family. In: Mohan, R.M.M. (Ed.), Research Advances in Phytochemistry, Vol. 2. Global Research Network, Kerala, pp. 19–108.
- Nascimento, I.R., Lopes, L.M.X., 1999. 2,3-Dihydrobenzofuran neolignans from *Aristolochia pubescens*. Phytochemistry 52, 345–350.
- Nascimento, I.R., Lopes, L.M.X., 2000. Erratum to "2,3-Dihydrobenzofuran neolignans from *Aristolochia pubescens*". Phytochemistry 53, 621.
- Navickiene, H.M.D., Lopes, L.M.X., 2001. Alkamides and phenethyl derivatives from *Aristolochia gehrtii*. J. Braz. Chem. Soc. 12, 467– 472.
- Priestap, H.A., 1989. ¹³C NMR spectroscopy of aristolochic acids and aristolactams. Magn. Reson. Chem. 27, 460–469.
- Velandia, J.R., Carvalho, M.G.De, Braz-Filho, R., 1998. Ácido *ent*-16α,17-diidroxicauran-19-óico isolado de *Ouratea semiserrata* e os desafios estereoquímicos dos carbonos quirais C-4 e C-16. Química Nova 21, 397–404.
- Wu, T.-S., Tsai, Y.-L., Damu, A.G., Kuo, P.-C., Wu, P.-L., 2002. Constituents from the root and stem of *Aristolochia elegans*. J. Nat. Prod. 65, 1522–1525.